Brain stiffness increases with myelin content.
نویسندگان
چکیده
UNLABELLED Brain stiffness plays an important role in neuronal development and disease, but reported stiffness values vary significantly for different species, for different brains, and even for different regions within the same brain. Despite extensive research throughout the past decade, the mechanistic origin of these stiffness variations remains elusive. Here we show that brain tissue stiffness is correlated to the underlying tissue microstructure and directly proportional to the local myelin content. In 116 indentation tests of six freshly harvested bovine brains, we found that the cerebral stiffnesses of 1.33±0.63kPa in white matter and 0.68±0.20kPa in gray matter were significantly different (p<0.01). Strikingly, while the inter-specimen variation was rather moderate, the minimum and maximum cerebral white matter stiffnesses of 0.59±0.19 kPa and 2.36±0.64kPa in each brain varied by a factor of four on average. To provide a mechanistic interpretation for this variation, we performed a histological characterization of the tested brain regions. We stained the samples with hematoxylin and eosin and luxol fast blue and quantified the local myelin content using image analysis. Interestingly, we found that the cerebral white matter stiffness increased with increasing myelin content, from 0.72kPa at a myelin content of 64-2.45kPa at a myelin content of 89%, with a Pearson correlation coefficient of ρ=0.91 (p<0.01). This direct correlation could have significant neurological implications. During development, our results could help explain why immature, incompletely myelinated brains are softer than mature, myelinated brains and more vulnerable to mechanical insult as evident, for example, in shaken baby syndrome. During demyelinating disease, our findings suggest to use stiffness alterations as clinical markers for demyelination to quantify the onset of disease progression, for example, in multiple sclerosis. Taken together, our study indicates that myelin might play a more important function than previously thought: It not only insulates signal propagation and improves electrical function of single axons, it also provides structural support and mechanical stiffness to the brain as a whole. STATEMENT OF SIGNIFICANCE Increasing evidence suggests that the mechanical environment of the brain plays an important role in neuronal development and disease. Reported stiffness values vary significantly, but the origin of these variations remains unknown. Here we show that stiffness of our brain is correlated to the underlying tissue microstructure and directly proportional to the local myelin content. Myelin has been discovered in 1854 as an insulating layer around nerve cells to improve electric signal propagation. Our study now shows that it also plays an important mechanical role: Using a combined mechanical characterization and histological characterization, we found that the white matter stiffness increases linearly with increasing myelin content, from 0.5kPa at a myelin content of 63-2.5kPa at 92%.
منابع مشابه
The mechanical importance of myelination in the central nervous system.
Neurons in the central nervous system are surrounded and cross-linked by myelin, a fatty white substance that wraps around axons to create an electrically insulating layer. The electrical function of myelin is widely recognized; yet, its mechanical importance remains underestimated. Here we combined nanoindentation testing and histological staining to correlate brain stiffness to the degree of ...
متن کاملMulticentre absolute myelin water content mapping: Development of a whole brain atlas and application to low-grade multiple sclerosis☆
The current study investigates the whole brain myelin water content distribution applying a new approach that allows for the simultaneous mapping of total and relative myelin water content, T 1 and T 2* with full brain coverage and high resolution (1 × 1 × 2 mm(3)). The data was collected at two different sites in healthy controls to validate the independence of a specific setup. In addition, a...
متن کاملAlzheimer’s Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea
Background Evidence from patients and animal models suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer's disease (AD) and that AD is associated with reduced brain tissue stiffness. Aim To investigate whether intermittent hypoxia (IH) alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA. Methods Six-eight month old (B6C3-Tg(APPswe,PSE...
متن کاملMyelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice
Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...
متن کاملMyelin Protection by Ursolic Acid in Cuprizone-Induced Demyelination in Mice
Neuronal survival in multiple sclerosis (MS) and other demyelinating diseases depends on the preservation of myelin and remyelination of axons. Myelin protection is the main purpose to decrease myelin damage in the central nervous system (CNS). Ursolic acid (UA) as a natural product in apple is suggested to protect neural cells. This study is the first to demonstrate an effect for UA on CNS mye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 42 شماره
صفحات -
تاریخ انتشار 2016